
Getting Started
with

Dalma

High Performance Computing NYUAD

November 2017 v6.1

November 2017 v6.1 1

SLURM: Partitions

•  A partition is a collection of nodes, they may share some attributes (CPU type, GPU, etc)

•  Compute nodes may belong to multiple partitions to ensure maximum use of the system

•  Partitions may have different priorities and limits of execution and may limit who can use them

•  Dalma's partition (as seen by users)

•  serial run single core and multi-threaded jobs (eg single node)
•  parallel run MPI jobs (eg multi-node)
•  bigmem run jobs on large memory systems only
•  butinah run jobs on SSE2 (Westmere) processors only (for serial-integer apps)
•  visual run jobs on systems with a graphics card only

•  There are other partitions, but these are reserved for specific groups and research projects

•  For those who are experts in SLURM we use partitions to request GPUs, large memory, and
visual instead of "constraints" as this approach gives us more flexibility for priorities and
resource limits.

November 2017 v6.1 24

SLURM: Submitting Jobs

•  To submit a job first you write a "job script"

#!/bin/bash
#SBATCH –p serial
#SBATCH –n 1
./myprogram

•  Then you submit the script in any of the following manner

> sbatch job.sh

 OR

> sbatch < job.sh

 OR

> sbatch << EOF
#!/bin/bash
#SBATCH –p serial
#SBATCH –n 1
./myprogram
EOF

November 2017 v6.1 25

SLURM: Arguments

•  Arguments to "sbatch" can be put on the command line or embedded in the job script

•  Putting them in the job script is a better option as then it "documents" how to rerun your job

#!/bin/bash
#SBATCH –p serial
#SBATCH –n 1
./myprogram

> sbatch job1.sh

 OR

#!/bin/bash
./myprogram

> sbatch –p serial –n 1 job2.sh

November 2017 v6.1 26

job1.sh

job2.sh

SLURM: Arguments

Common Job submission arguments:

November 2017 v6.1

-n Select number of tasks to run (default 1 core per task)

-C Select required system feature (eg avx2, sse, gpu)

-N Select number of nodes on which to run

-t Wallclock in hours:minutes:seconds (ex 4:00:00)

-p Select partition (serial, parallel, gpu, bigmem)

-o Output file (with no –e option, err and out are merged to the Outfile)

-e Keep a separate error File

-d Dependency with prior job (ex don't start this job before job XXX terminates)

-A Select account (ex physics_ser, faculty_ser)

-c Number of cores required per task (default 1)

--tasks-per-node Number of tasks on each node

--mail-type=type Notify on state change: BEGIN, END, FAIL or ALL

--mail-user=user Who to send email notification

--mem Maximum amount of memory per job (default is in MB, but can use GB suffix)

 (Note: not all memory is available to jobs, 8GB is reserved on each node for the OS)

 (So a 128GB node can allocate up to 120GB for jobs) 27

SLURM: Job Dependencies

November 2017 v6.1

•  Submitting with dependencies: Useful to create workflows

•  Any specific job may have to wait until any of the specified conditions are met
•  These conditions are set with –d type:jobid where type can be:

•  after run after <jobid> has terminated
•  afterany if <jobid> is a job array run after any job in the job array has terminated
•  afterok run after <jobid> if it finished successfully
•  afternotok run after <jobid> if it failed to finish successfully

#	Wait	for	specific	job	array	elements	
sbatch	--depend=after:123_4	my.job	
sbatch	--depend=afterok:123_4:123_8	my.job2	
	
#	Wait	for	entire	job	array	to	complete	
sbatch	--depend=afterany:123	my.job	
	
#	Wait	for	entire	job	array	to	complete	successfully	
sbatch	--depend=afterok:123	my.job	
	
#	Wait	for	entire	job	array	to	complete	and	at	least	one	task	fails	
sbatch	--depend=afternotok:123	my.job	

28

SLURM: Listing Jobs

•  Each submitted job is given a unique number

•  You can list your jobs to see which ones are waiting (pending), running

•  As well as how long a job has been running and on which node(s)

> squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 435251_[1-50] ser_std 151215_F u123 PD 0:00 1 (Priority)
 435252_[1-50] ser_std 151215_F u123 PD 0:00 1 (Priority)
 435294 ser_std Merge5.s u123 PD 0:00 1 (Priority)
 435235_[20-50] ser_std 151215_F u123 PD 0:00 1 (Priority)
 435235_19 ser_std 151215_F u123 R 12:55 1 compute-21-8
 435235_17 ser_std 151215_F u123 R 47:34 1 compute-21-12
 435235_15 ser_std 151215_F u123 R 49:04 1 compute-21-7
 435235_13 ser_std 151215_F u123 R 50:34 1 compute-21-4
 435235_11 ser_std 151215_F u123 R 54:35 1 compute-21-9
 435235_9 ser_std 151215_F u123 R 56:35 1 compute-21-6
 435235_7 ser_std 151215_F u123 R 58:35 1 compute-21-5
 435235_5 ser_std 151215_F u123 R 59:36 1 compute-21-1
 435235_3 ser_std 151215_F u123 R 1:00:36 1 compute-21-11
 435235_1 ser_std 151215_F u123 R 1:04:37 1 compute-21-3

November 2017 v6.1 29

SLURM: Listing Jobs

•  You can look at completed jobs using the "sacct" command

•  To look at jobs you ran since July 1, 2017

 > squeue –starttime=2017-07-01

•  You can retrieve the following informations about a job after it terminates:

 JobID JobIDRaw JobName Partition MaxVMSize MaxVMSizeNode
MaxVMSizeTask AveVMSize MaxRSS MaxRSSNode MaxRSSTask AveRSS
MaxPagesNode MaxPagesTask AvePages MinCPU MinCPUNode MinCPUTask
NTasks AllocCPUS Elapsed State ExitCode AveCPUFreq
MaxPages AveCPU ReqCPUFreqMin ReqCPUFreqMax
ReqCPUFreqGov ReqMem ConsumedEnergy MaxDiskRead
MaxDiskReadNode MaxDiskReadTask AveDiskRead MaxDiskWrite
MaxDiskWriteNode MaxDiskWriteTask AveDiskWrite AllocGRES
ReqGRES ReqTRES AllocTRES

•  To retrieve specific informations about a job

> sacct -j 466281 -format=partition,alloccpus,elapsed,state,exitcode
 JobID JobName Partition Account AllocCPUS State ExitCode

 ------------ ---------- ---------- ---------- ---------- ---------- --------
466281 job3.sh par_std cpcm_par 56 COMPLETED 0:0
466281.batch batch cpcm_par 28 COMPLETED 0:0
466281.0 env cpcm_par 56 COMPLETED 0:0

November 2017 v6.1 30

SLURM: Job Progress

•  You can see your job's progress by looking at the output and error files

•  By default output and error files are named "slurm-XXX.out" and "slurm-XXX.err" where XXX
is the job id

•  "tail –f" allows you to track new output as it is produced

> cat slurm-435563.out

> more slurm-435563.out

> tail –f slurm-435563.out

November 2017 v6.1 31

SLURM: Killing Jobs

•  Sometimes you need to kill your job when you realise it is not working as expected

•  Note that your job can be killed automatically when it reaches its maximum time/memory
allocation

> scancel 435563

November 2017 v6.1 32

SLURM: tasks

November 2017 v6.1

SLURM "tasks"

#SBATCH –n 2 VS #PBS –l nodes=1:ppn=2

In SLURM users specify how many tasks – not cores! - they need (-n). Each task by default
uses 1 core. But this can be redefined by users using the "-c" option.

For example #SBATCH –n 2 is requesting 2 cores, while #SBATCH –c 3 #SBATCH –n 2 is
requesting 6 cores.

On Dalma/SLURM we implement an exclusive policy on nodes being used to run parallel jobs –
eg no other jobs may run on nodes allocated for running parallel jobs.

When submitting parallel jobs on Dalma you need not specify the number of nodes. The
number of tasks and cpus-per-task is sufficient for SLURM to determine how many nodes to
reserve.

33

SLURM: node list

November 2017 v6.1

Sometimes applications require a list of nodes where they are to run in parallel to start.

SLURM keeps the list of nodes within the environment variable "$SLURM_JOB_NODELIST".

To retrieve the list of nodes in a PBS format file use "generate_pbs_nodefile".

For example:

export NODEFILE=$(generate_pbs_nodefile)

Then $NODEFILE contains the name of a temporary file containing the list of nodes used
following the PBS hostfile format.

34

SLURM: accounts

November 2017 v6.1

SLURM maintains user associations which include user, account, qos, and partition. Users
may have several associations. Moreover, accounts are hierarchical. For example, account
"physics" maybe be a sub-account of "faculty", which may be a sub-account of "institute", etc.

When submitting jobs users with multiple associations must explicitely list the account, qos,
partition details they wish to use.

sbatch –p serial –a physics –q normal –u benoit job

Dalma specific job submission tools extend SLURM's associations to define a "default"
association. So you only need to specify accounts is, for example, you belong to multiple
accounts – ex faculty and research-lab – and you want to execute using your non-default
account. So at most you'll need to specify:

sbatch –p <partition> -a <account> job

Moreover, accounts, partitions, qos and users may each be configured with resource usage
limits. Thus the administrators can impose limits to the number of jobs queued, jobs running,
cores usage, and run time.

35

SLURM: account limits

November 2017 v6.1

To see you SLURM associations (and their parents) as well as your resource usage limits use
the following Dalma specific tool:

> slurm-show-my-limits.sh
------- --------- ------------ ------------ --------- ------- --------- -------- ------- --------- --------- ---------
 User Account Partition QOS GrpSubmit GrpJobs GrpTRES MaxTRES MaxJobs MaxSubmit MaxWall Par Name
------- --------- ------------ ------------ --------- ------- --------- -------- ------- --------- --------- ---------
 benoit qaad_par par_std par_std cpu=700 cpu=700 100 200 12:00:00
 benoit qaad_ser visual visual 100 200 12:00:00
 benoit qaad_ser butinah butinah 100 200 12:00:00
 benoit qaad_ser bigmem bigmem cpu=10 100 200 12:00:00
 benoit qaad_ser preempt_std preempt_std 100 200 12:00:00
 benoit qaad_ser ser_std ser_std cpu=70 100 200 12:00:00
 qaad_par normal cpu=112 100 200 12:00:00 qaad
 qaad normal cpu=252 100 200 nyuad
 nyuad normal 20000 1000 cpu=6608 100 200 root
 root normal
 qaad_ser normal cpu=140 100 200 12:00:00 qaad
 qaad normal cpu=252 100 200 nyuad
 nyuad normal 20000 1000 cpu=6608 100 200 root
 root normal

36

SLURM: account limits

November 2017 v6.1

> slurm-show-my-limits.sh
------- --------- ------------ --------- ------- --------- -------- ------- --------- --------- ---------
 User Account Partition GrpSubmit GrpJobs GrpTRES MaxTRES MaxJobs MaxSubmit MaxWall Par Name
------- --------- ------------ --------- ------- --------- -------- ------- --------- --------- ---------
 benoit qaad_par par_std cpu=700 cpu=350 100 200 12:00:00
 benoit qaad_ser visual 100 200 12:00:00
 benoit qaad_ser butinah 100 200 12:00:00
 benoit qaad_ser bigmem cpu=10 100 200 12:00:00
 benoit qaad_ser preempt_std 100 200 12:00:00
 benoit qaad_ser ser_std cpu=70 50 75 6:00:00
 qaad_par cpu=1000 100 200 12:00:00 qaad
 qaad cpu=252 100 200 nyuad
 nyuad 20000 1000 cpu=6608 100 200 root
 root
 qaad_ser cpu=140 100 200 12:00:00 qaad
 qaad cpu=252 100 200 nyuad
 nyuad 20000 1000 cpu=6608 100 200 root
 root

In this output we see:

•  user "benoit" can submit up to 200 jobs on "par_std" (parallel) partition, but have at most 100 jobs running consuming a maximum

of 700 cores total where each jobs is limited to a maximum of 350 cores for 12 hours

•  user "benoit" can submit up to 75 jobs on "ser_std" (serial) partition, with at most 50 jobs running using a total of up to 70 cores for
up to 6 hours

•  account "qaad_par" is shared with other users and together they have a limit of 1000 cores, 200 jobs queued, and 100 jobs
running (eg the sum of all cores used by running jobs using account "qaad_par" can't exceed 1000 cores)

•  account "qaad_ser" is shared with other users and together they have a limit of 140 cores, 200 jobs queued, and 100 jobs running

•  account "qaad" is a sub-account of "nyuad" and the sum of all parallel and serial jobs can't exceed 200 jobs queued, 100 jobs
running and 252 cores

37

SLURM: account usage

November 2017 v6.1

This next Dalma specific tool allows you to see how much resources you are using. This is useful when your
job can't run because of "group resource limit" having been reached.

38

Here user "u123" has two accounts,
"cpcm_par" and "cpcm_ser". On the
"cpcm_par" (parallel partition) his limit is
1400 cores, and he's currently using 0
cores. However, other users from the
same account are already using 336 cores
out of the account maximum 5600.

The "cpcm_par" account is a sub-account
of "cpcm", which currently is using 336
cores out of the 5600 permitted.

The "cpcm" account is also a sub-account
of "institute". All "institute" users are
presently using 846 cores out of the 6608
cores account limit.

Finally "institute" is a sub-account of
"nyuad" where 5876 cores are being used -
nearly at the 6608 limit.

SLURM: account usage

November 2017 v6.1

The "slurm_show_usage" tool has an option to show you which account level would prevent you to run a job.

39

The "-n 800" option will show which
account(s) would exceed the user or
account core limit if you were to submit a
job requiring 800 cores.

SLURM: account usage

November 2017 v6.1 40

The "-a" option will show all accounts
usage and limit on Dalma, as well as their
current usage.

The usage limits are defined by the
academic steering committee in order to
meet each group's computational needs,
while allowing fairness to all groups.

The account limits are periodically revised
based on prior usage statistics and inputs
from the research groups about new
project requirements.

Thus, the HPC support team role is limited
to implementing the recommendations
from the steering committee and to provide
the steering committee with statistics and
other key informations that help them
define fair resource usage rules.

SLURM: system usage

November 2017 v6.1 41

The "dmap" tool (Dalma specific) will show you the utilization of each compute node on the cluster. The first
numbers is a shorthand for the compute node name, so "12-3" actually means "compute-12-3". The second
numbers represent the number of cores used and total number of cores in the system.

"white" highlight shows
nodes that are down for
maintenance.

"green" means a node is
busy.

No highlight means a
node is free.

