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Article

Dual Theory of Decaying Turbulence.
2. Numerical Simulation and Continuum Limit

Alexander Migdal

Department of Physics, New York University Abu Dhabi,Saadiyat Island, Abu Dhabi, PO Box 129188, Abu

Dhabi, United Arab Emirates; am10485@nyu.edu

Abstract: This is the second paper in a cycle investigating the exact solution of loop equations in

decaying turbulence. We perform numerical simulations of the Euler ensemble, suggested in the

previous work, as a solution to the loop equations. We designed novel algorithms for simulation,

which take a small amount of computer RAM so that only the CPU time grows linearly with the

size of the system and its statistics. This algorithm allows us to simulate systems with billions of

discontinuity points on our fractal curve, dual to the decaying turbulence. For the vorticity correlation

function, we obtain quantum fractal laws with regime changes between universal discrete values of

indexes. The traditional description of turbulence with fractal or multifractal scaling laws does not

apply here. The measured conditional probabilities of fluctuating variables are smooth functions of

the logarithm of scale, with statistical errors being negligible at our large number of random samples

T = 167, 772, 160 with N = 200, 000, 000 points on a fractal curve. The quantum jumps arise from

the analytical distribution of scaling variable X = cot2(πp/q)
q2 where

p
q is a random fraction. This

distribution is related to the totient summatory function and is a discontinuous function of X. In

particular, the energy spectrum is a devil’s staircase with tilted uneven steps with slopes between −1

and −2.03. The logarithmic derivative of energy decay n(t) as a function of time is jumping down

the stairs of universal levels between 1.50 and 1.53. The quantitative verification of this quantization

would require more precise experimental data.

Keywords: turbulence; fractal; anomalous dissipation; fixed point; velocity circulation; numerical

simulations; GPU; loop equations

1. Introduction

In 1993, we suggested [1] nonperturbative approach to Navier-Stokes turbulence based on the

loop equations previously introduced in the gauge theory [2,3].

The Wilson loop average for the turbulence

Ψ[γ, C] =

〈

exp

(

ıγ

ν

∮

dθC⃗′(θ) · v⃗(C⃗(θ))

)〉

init

(1)

treated as a function of time and a functional of the periodic function C : r⃗ = C⃗(θ); θ ∈ (0, 2π) (not

necessarily a single closed loop), satisfies certain functional equation which was defined and studied

in these papers.

The averaging ⟨⟩init corresponds to averaging over an ensemble of solutions with different initial

data. One does not need to specify this ensemble to obtain the Hopf or loop equation.

We are not going into details of the loop technology but shall investigate the solution found in the

recent paper [4].

2. The theory

This solution has the following form

Ψ[γ, C] =

〈

exp

(

ıγ

ν

∮

dθC⃗′(θ) · P⃗(θ)

)〉

F

(2)
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The averaging ⟨⟩F corresponds to averaging over an ensemble of solutions for F⃗(θ) to be specified

below.

This periodic vector function P⃗(θ) also depends of time as follows

P⃗(θ, t) =

√

ν

2(t + t0)

F⃗(θ)

γ
; (3)

(4)

The time-independent function F⃗(θ) satisfies two singular equations

(∆F⃗)2 = 1; (5a)

(2F⃗ · ∆F⃗ − ıγ)2 + γ2 = 4F⃗2; (5b)

∆F⃗ = F⃗(θ + 0)− F⃗(θ − 0); (5c)

F⃗ =
F⃗(θ + 0) + F⃗(θ − 0)

2
; (5d)

This equation describes a fixed point regime of the loop equations for decaying turbulence. No

approximations have been made so far.

This F⃗(θ) is a fractal curve in complex 3D space, with discontinuity ∆F⃗ at every angle θ.

The solution in [4] builds such a curve as a limit of the polygon with N → ∞ vertexes. The

positions F⃗k = F⃗(2πk/N) of these vertices satisfy the recurrent equation

(

F⃗k+1 − F⃗k

)2
= 1; (6a)

(

F⃗2
k+1 − F⃗2

k − ıγ
)2

+ γ2 =
(

F⃗k+1 + F⃗k

)2
(6b)

There could be many solutions of such equations in d > 2 dimensions, as these are two complex

equations relating d complex parameters in F⃗k+1 to those in F⃗k.

Thus, there are d − 2 complex parameters undetermined in every step q⃗k = F⃗k+1 − F⃗k. This

degeneration makes this a Markov chain or a random walk where each step depends only on a current

position plus some arbitrary (random) parameters.

2.1. The Euler ensemble and its continuum limit

In particular, the following solution, found in [4], has some acceptable physical properties. We

call it the Euler ensemble.

F⃗k =
1

2
csc

(

β

2

)

Ω̂ ·
{

cos(αk), sin(αk)w⃗, i cos

(

β

2

)}

; (7)

Ω̂ ∈ O(d); (8)

β =
2πp

q
; (9)

0 < p < q < N; (10)

αk = β
k−1

∑
0

σl ; (11)

σ2
k = 1; (12)

N−1

∑
0

σl = qr; (13)

−N ≤ qr ≤ N; (14)

(N − rq) (mod 2) = 0; (15)
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Here p, q, r, N are positive integers, Ω̂ is a random rotation matrix in O(d), and w⃗ ∈ Sd−3 is a unit

vector in d − 2 dimensional space Rd−2.

This paper only considers the three-dimensional space d = 3 where w⃗ = ±1. This sign factor can

be absorbed into a redefinition of σl .

This sequence with arbitrary signs σk = ±1 subject to periodicity constraint (13) solves recurrent

equation (6) independently of γ.

This ensemble consists of random p, q, r, N, σ0 . . . σN−1 subject to periodicity conditions; we called

it an Euler ensemble.

The ergodic hypothesis of [4] states that each element of the Euler ensemble enters with equal

weight. This includes every set of σl satisfying periodic boundary condition (13), every pair of coprime

numbers 0 < p < q < N, gcd(p, q) = 1 and every q, r, N with (N − qr) (mod 2) = 0.

The number theory counts these states using Euler totients.

A unique property of this solution is that the velocity circulation is real in this solution, as it

should, despite the complex values of F⃗k.

This cancellation of the imaginary part happens because of the closure (i.e., periodicity) of both

loops C⃗(θ), F⃗(θ)

∮

dθC⃗′(θ) · F⃗(θ) = −
∮

dθC⃗(θ) · F⃗′(θ); ; (16)

∑
k

∆C⃗k · F⃗k = −∑
k

C⃗k · ∆F⃗k; (17)

The discontinuity (i.e., the polygon side) is a real unit vector :

q⃗k = ∆F⃗k = σkΩ̂ · {− sin δk, w⃗ cos δk, 0}; (18)

δk = αk +
βσk

2
; (19)

The sum over all different configurations of the Euler ensemble with exponential weight

exp (−µN) is called a grand canonical ensemble, using the language of statistical physics. The number

theory counting using Euler totients [5] produces the following general formula [4]

Z(µ) = ∑
N

Z(N, N)e−µN ; (20)

⟨F(p, q, r, N)⟩E(µ) =

∑
N

e−µN ∑
2<q<N

q−1

∑
p=1

(p,q)=1

∑
r

2|(N−qr)

F(p, q, r, N)

Z(µ)
; (21)

At the critical point µ → 0, the even N dominate, with the following result

Z(µ) → 1

2

9

2
√

2π2µ5/2
(22)

The enstrophy, defined as an expectation value of the square of local vorticity, reduces in this

theory to the following time-dependent formula [4]

〈

ω⃗(⃗0)2
〉

=
1

(t + t0)2

〈

2−N−4S(q)
(

N − q2r2
)

(

N

(N + qr)/2

)〉

E(µ)
; (23)

S(q) =
q−1

∑
p=1

(p,q)=1

cot2

(

πp

q

)

; (24)
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We have found the method to compute this sum of squares of cotangent of all fractions of π with a

given denominator analytically. This method is described in Appendix of [4].

2.2. Small Euler ensemble at large N

At a fixed large value of q, the CDF of x = β/(2π) is given by the ratio of the Euler totient

functions, asymptotically equal to x at large q

P(β < 2πx | q) =
φ(xq)

φ(q)
→ x; (25)

The CDF of q is proportional to the totient summatory function

Φ(n) =
n

∑
k=1

φ(k) → 6

π2
n2 (26)

Thus, the normalized CDF of y = q/N

P(q < yN) → y2; (27)

fy(y) → 2yθ(y)θ(1 − y); (28)

As we shall see, rather than β, we would need an asymptotic distribution of a scaling variable

X(p, q) =
1

q2
cot2

(

πp

q

)

→ 1

π2 p2
(29)

The βN variable can be related to y and X(p, q)

βN = 2N arcCot(q
√

X) → 2

y
√

X
; (30)

This distribution for X(p, q) at fixed q ∼ N → ∞ can be found analytically, using newly established

relations for the cotangent sums (see Appendix in [4]). Asymptotically, at large q these relations read

⟨Xn⟩ ≡ lim
q→∞

1

q

q−1

∑
p=1
(p,q)

X(p, q)n = δn,0 +
2π−2nζ(2n)

(2n + 1)ζ(2n + 1)
(31)

This relation can be transformed further as

⟨Xn⟩ =



















1 if n = 0

2
∞

∑
k=1

φ(k)k−(2n+1)

(2n+1)π2n if n > 0

(32)

The Mellin transform of these moments leads to the following singular distribution

⟨Xn⟩ =
∫ ∞

0
fX(X) dX Xn; (33)

fX(X) = (1 − α)δ(X − 0+) + πΦ

(⌊

1

π
√

X

⌋)

; (34)

α =
∫ ∞

0
πΦ

(⌊

1

π
√

X

⌋)

dX = π
∞

∑
k=1

φ(k)
2k + 1

k2(k + 1)2
= 0.387153 (35)

where Φ(n) is the totient summatory function
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Figure 1. The log-log-plot of the totient summatory function. It is takes a constant value
φ(k)

π at

each internal 1
π2(k+1)2 < X <

1
π2k2 with positive integer k. The convergent integral α = 0.387153 of

this piecewise constant function reduces to the sum of these constant values times the widths of the

intervals.

The first term (1 − α)δ(X − 0+) accumulates the contribution from the vicinity of the finite lower

limit of X

Xmin = X (⌊q/2⌋ − 1, q) → π2

q4
= 0+ (36)

This lower limit tends to zero, which leaves some part of the delta function out of the support of

probability distribution. Normalizing the base moment
〈

X0
〉

= 1 yields the correction factor (1 − α) in

front of the delta function. Therefore, the α part of the delta function in the normalized distribution

falls below the lower limit, with the remaining part (1 − α) staying in the support of the distribution.

The upper limit of X

Xmax = X (q − 1, q) → 1

π2
(37)

Our distribution (33) is consistent with this upper limit, as the argument
⌊

1
π
√

X

⌋

becomes zero at

Xπ2 > 1. It is plotted in Figure 1, except for the delta function part at infinitesimal X.

Once we are zooming into the tails of the p, q distribution, we also must recall that

P(q < yN) = Φ (⌊Ny⌋) ; (38)

fy(y) =
∞

∑
q=2

δ
(

y − q

N

)

φ(q) (39)
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The variable s also has a nontrivial distribution in the small Euler ensemble with even N → ∞,

with a dominant contribution at s = 0 as conjectured in [4] and proven in [6]

fs(s) = δ(s) + O
(

N−1/2
)

(40)

3. The big Euler ensemble as a Markov process

3.1. Numerical Simulations

We took N = 200, 000, 000 and generated T = 167, 772, 160 random data samples for β, ω⃗n ·
ω⃗m,

∣

∣

∣S⃗n,m − S⃗m,n

∣

∣

∣ with randomly chosen 0 ≤ n < m < N.

We devised a fast Python/CPP algorithm for this simulation, described in Appendix A. We ran it

on an NYUAD cluster Jubail, which took about a week altogether, for three GPU runs and three CPU

runs, which we all pooled into one dataset and binned by 220 intervals by the ranking of log cot2(β/2).

Two datasets were created, one for each sign of ω⃗n · ω⃗m.

We used a recursive rank-binning algorithm based on the standard library function nth-element,

which finds the median of unordered data by partial sorting in place in O(N) time. We recursively

applied this function in parallel to each of the two halves of the array of data. The CPU time of this

recursive parallel code is linear, as the geometric series N + N/2 + N/4 + . . . adds up to 2N.

Each interval contained only n = 80 ± 1 data points {n, c̄, ∆c, s̄, ∆s, w̄, ∆w}, where

c = 2 log |cot(β/2)| ; (41)

s = log
∣

∣

∣S⃗n,m − S⃗m,n

∣

∣

∣ ; (42)

w = log |ω⃗n · ω⃗m|; (43)

and x̄, ∆x denotes mean and standard deviation. Later, we used these data with Gaussian errors for

the statistical analysis. We used logarithms because the values varied by several orders of magnitude,

preventing statistical analysis.

The code was optimized to take O(N0) RAM, so the CPU and GPU resources of all 200 nodes

were used to collect statistics. This optimization allows us to simulate astronomical ensembles of

random fractions without hitting memory limits.

The first thing we measured was the distribution of x = β
2π = p

q , which we know in advance to

be uniform except for small regions of x ∼ 1/N, 1 − x ∼ 1/N, where quantization plays the role.

The measured distribution supports this hypothesis (see Figure 2). The CDF is linear, supporting

Out[ ]=

0.2 0.4 0.6 0.8
x

0.2

0.4

0.6

0.8

1.0

P

PDFω.ω <0

P

-0.14756 + 1.29531 x

(a) CDF for
p
q for ω⃗m · ω⃗n < 0

Out[ ]=

0.2 0.4 0.6 0.8
x

0.2

0.4

0.6

0.8

1.0

P

PDFω.ω >0

P

-0.14318 + 1.28681 x

(b) CDF for
p
q for ω⃗m · ω⃗n > 0

Figure 2. The CDF for
p
q for positive and negative ω⃗m · ω⃗n
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the uniform distribution of
p
q except for the endpoints (0, 1).

However, the critical phenomena in our system are related to these two endpoints where the

scaling factor cot2(β/2) grows to ∼ q2. The uniform distribution of β corresponds to the variable

X = q−2 cot2(β/2) distributed at large q as

fX(X | q) ∝ q−1X−3/2 (44)

The exact asymptotic distribution for the same variable has the form (34), found in the previous section.

3.2. Scaling variables in continuum limit

Out[ ]=

-25 -20 -15 -10

-4

-3

-2

-1

DS

Figure 3. Log-log plot of CDF tail for
∣

∣

∣S⃗n,m − S⃗m,n

∣

∣

∣ /q. The curve is nonlinear in log scale, contradicting

the simple fractal scaling laws.
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Figure 4. Log-log plot of CDF tail for |ω⃗m · ω⃗n| /q2. The curve is nonlinear in log scale, contradicting

the simple fractal scaling laws.
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This quantum distribution is too complicated to reproduce in numerical simulation, but we

measured distributions of other variables that behave smoother.

We studied the distribution of two variables involved in the correlation function (see next section)

DS = q−1
∣

∣

∣
S⃗n,m − S⃗m,n

∣

∣

∣
; (45)

WW = q−2ω⃗m · ω⃗n; (46)

We multiplied both variables by powers of q to make them finite in the statistical limit q ∼ N → ∞.

The distributions of these variables are shown in Figure 3 and Figure 4.

The variable DS measures the mean Euclidean distance between two random points on a curve

in the embedding 3D complex space.

Let us study the moments of this distribution. Integrating by part in the standard definition, we

have

⟨(DS)n⟩ =
∫

W ′(DS)(DS)nd(DS) = n
∫

(1 − W(DS))(DS)n−1d(DS) =
∫

exp (nξ + T(ξ) + log n) dξ; (47)

T(ξ) = log ((1 − W (exp (ξ))) ; (48)

Our data was fit perfectly by 20 Chebyshev polynomials for this T(ξ) (see [7] and Figure 5).

Out[ ]=

-25 -20 -15 -10

-4

-3

-2

-1

DS

Fit

Figure 5. Fit of log(1 − CDF(DS)) with 20 Chebyshev polynomials of log DS rescaled to −1, 1 interval.

The small statistics data at large negative log DS was discarded

The definition of effective index can be given as

η(n) =
log ⟨(DS)n⟩

log ⟨DS⟩ ; (49)
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The saddle point computation of this integral gives the following parametric equations

n = −T′(ξ); (50)

log ⟨(DS)n⟩ → Ln(ξ) = (nξ + T(ξ) + log n)n=−T′(ξ) ; (51)

L1 = (ξ1 + T(ξ1))1=−T′(ξ1)
; (52)

η(−T′(ξ)) =
Ln(ξ)

L1
(53)

This function was computed in [7], and here is the plot in Figure 6. It is numerically close to a linear

function , though it is analytically nonlinear.

Out[ ]=

1 2 3 4 5
n

1

2

3

4

η(n)

Figure 6. The multifractal dimension η(n) of moments ⟨DSn⟩. The curve is numerically close to a

linear function.

We also study some quantum fractal phenomena in the next section. The observable variables are

distributed with quantum jumps, not fitting the multifractal framework.

There is another variable that depends on two spins at two different points σn, σm, n < m

Y(p, q, σ) = −σnσmX(p, q) (54)

The even moments
〈

Y2l
〉

of the distribution of Y are the same as those for X, but the odd moments

are different:

〈

Y2l+1
〉

= −
〈

X2l+1 ⟨σnσm⟩σ

〉

E
(55)

The analytic computation of the constrained average over sigmas by Mathematica® yields

⟨σnσm⟩σ = − N − q2r2

(N − 1)N
(56)

We find the following result for the distribution of Y on the whole real axis

fY(Y | N, q, r) =

(

1

2
+ sign Y

N − q2r2

2(N − 1)N

)

fX(|Y|) (57)
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Asymptotically, at s = qr/N ∼ 1 we have

fY(Y | s) → 1 − sign(Y)s2

2

(

(1 − α)δ(|Y| − 0+) + πΦ

(⌊

1

π
√

|Y|

⌋))

; (58)

Due to kinematical restrictions |y| < 1, our probably stays positive. At r = 0, we have a special case

fY(Y | s = 0) → N + sign(Y)

2N

(

(1 − α)δ(|Y| − 0+) + πΦ

(⌊

1

π
√

|Y|

⌋))

; (59)

4. Vorticity correlation

4.1. Exact relation to the conditional probability density

The simplest observable quantities we can extract from the loop functional are the vorticity

correlation functions [8], corresponding to the loop C backtracking between two points in space

r⃗1 = 0, r⃗2 = r⃗, (see [4] for details and the justification). The vorticity operators are inserted at these two

points.

The correlation function reduces to the following average over the big Euler ensemble E of our

random curves in complex space [4]

〈

ω⃗(⃗0) · ω⃗(⃗r)
〉

=

1

4(t + t0)2

∫

O(3)
dΩ ∑

0≤n<m<N

〈

ω⃗m · ω⃗n exp
(

ı⃗ρ · Ω ·
(

S⃗n,m − S⃗m,n

))〉

E
; (60)

S⃗n,m =
∑

m−1
k=n F⃗k

m − n (mod N)
; (61)

ω⃗k =

{

0, 0,
ıσk

2
cot

(

β

2

)}

; (62)

ρ⃗ =
r⃗

2
√

ν(t + t0)
; (63)

⟨X[σ...]⟩p,q,r ≡
∑E X[σ...]δ[qr − ∑ σ]

∑E δ[qr − ∑ σ]
; (64)

Integrating the global rotation matrix O(3) is part of the ensemble averaging.

These formulas simplify in the Fourier space, corresponding to the correlation of ω⃗(⃗k) · ω⃗(−⃗k).

〈

ω⃗(⃗k) · ω⃗(−⃗k)
〉

∝ ν
3
2 (t + t0)

− 1
2 ∑

0≤n<m<N
〈

ω⃗m · ω⃗n

∫

O(3)
dΩδ3

(

Ω ·
(

S⃗n,m − S⃗m,n

)

− k⃗
√

ν(t + t0)

)〉

E

(65)

This three-dimensional delta function disappears if we introduce the above distribution fY(y) for

Y = q−2ω⃗m · ω⃗n and conditional distribution fZ(Z | y) for the second variable Z =
|S⃗n,m−S⃗m,n|

q given

the first one y. We rely on r = 0 and even N to dominate the partition function, as it was conjectured

in [4] and proven in [6]. We also assume the distribution fZ(z | y) for the second scaling variable Z,

conditional by |Y| = y, to be independent of the sign of Y. The heuristic argument is that the sign of

Y depends only on σnσm, only two out of N variables σl , which becomes statistically insignificant at

large N.Our large-scale numerical simulation confirms this heuristic argument for N = 2 ∗ 108.
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We also use the conditional probability, which is an integral of the conditional distribution

fZ(z | Y > y) =
∫ 0

y
dy′ fZ(z | y′); ; (66)

fZ(z | y) = −∂y fZ(z | Y > y) (67)

In this case, after switching to fZ(z | Y > y) and integrating by parts we find

〈

ω⃗(⃗k) · ω⃗(−⃗k)
〉

∝ ν
3
2 (t + t0)

− 1
2

∫

dW(q)q4

∫

fY(y)y dy
∫

dΩ

∫

dZ fZ(Z | y)δ3

(

Ω · {0, 0, Zq} − k⃗
√

ν(t + t0)

)

=

√
ν

k⃗2(t + t0)
3
2

∫

dqΦ(⌊q⌋)q
∫

dy fY(y)y fZ

(

|⃗k|
√

ν(t + t0)

q
| y

)

=

√
ν

k⃗2(t + t0)
3
2

∫

dqΦ(⌊q⌋)q
∫

dy fZ

(

|⃗k|
√

ν(t + t0)

q
| Y > y

)

∂y ( fY(y | 0)y) ; (68)

The distribution fy(y | 0) was found above, in (59) by the number theory methods. We are using

the derivative

∂y( fY(y | 0)y) = π

∂

(

|y|Φ
(⌊

1

π
√

|y|

⌋))

∂y
=

πΦ

(⌊

1

π
√

|y|

⌋)

+
2

π3

∞

∑
n=1

φ(n)

n5
δ

(

y − 1

π2n2

)

(69)

The resulting formula for the correlation function

〈

ω⃗(⃗k) · ω⃗(−⃗k)
〉

∝

√
ν

k⃗2(t + t0)
3
2

∫

dq qΦ(⌊q⌋)
(

2

π3

∞

∑
n=1

φ(n)

n5
fZ

(

z | Y <
1

π2n2

)

+ π
∞

∑
n=1

Φ(n + 1)
∫ 1

π2n2

1
π2(n+1)2

dy fZ(z | Y < y)

)

; (70)

z =
|⃗k|
√

ν(t + t0)

q
; (71)

4.2. Extracting conditional distribution from numerical data

We measured conditional probability in our data set of 167, 772, 160 samples for N = 200, 000, 000

(see Figure 7).
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Out[ ]=

Figure 7. 3D Plot of the conditional probability P (log DS | log WW < y) in a triple log scale. The data

(red dots) was averaged over 1000 samples sorted by log WW.

The conditional probability P (DS | WW < y) was defined as a rate of events with given DS and

WW < y. It is shown as a 3D plot on the log-log-log scale in Figure 7.

In a classical fractal system, one would expect to observe the two-dimensional surface

P (log Z | log WW < Y) in a three-dimensional space Y, Z,P.

Instead, we found a thin, smooth line in three dimensions, which can be fitted as a parametric

equation

log Y = a + b log Z; (72)

log Z = f (L); (73)

logP (Z | WW > Y) = L; (74)

f (L) ≈ f0 + f1L + f2L2 + f3L3; (75)

Projections of this line on three planes reveal its simplicity.

The relation between log Z, logP is shown in Figure 8.

Out[ ]=

-4 -3 -2 -1
Log[P]

-25

-20

-15

-10

-5

Log[ k Sqrt[ν t]/q]|k|

data

-10.6123 + 5.43603 x + 0.849258 x2 + 0.0500626 x3

Figure 8. The relation of log Z, logP (red dots) is fitted by a third-degree polynomial (blue)
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The fit parameter table for f (x) is

Estimate Standard Error t-Statistic P-Value

f0 −10.6123 0.0030473 −3482.54 0.

f1 5.43603 0.00542859 1001.37 0.

f2 0.849258 0.00224021 379.097 0.

f3 0.0500626 0.000234038 213.908 0.

(76)

Out[ ]=

-26 -24 -22 -20 -18 -16 -14 -12
Log[ k Sqrt[ν t]/q]

-35

-30

-25

Log[|ω.ω|/q^2]
KWplot

data

-10.2124 + 1.03547 x

Figure 9. Direct scaling relation between WW and DS, ads fit to the log-log of joint distribution

If we directly plot Y(Z), we get a straight line corresponding to a scaling law (see Figure 9). The

fitting table for this linear relation log Y = a + b log Z in the log-log scale is

Estimate Standard Error t-Statistic P-Value

a −10.2124 0.0039544 −2582.54 0.

b 1.03547 0.00025789 4015.16 0.

(77)

So, a scaling law is hidden inside the discontinuous distributions induced by Euler totients.

Y = AZb; (78)

A = exp (a) = 0.0000367128; (79)

The probability density fZ(z | Y > y), which we need in correlation function, is related to this

number of events P (Z | WW > y) as follows

fZ(z | Y > y) =
dP (Z | WW > y)

dZ
=

∂LP (Z | WW > y)

∂LZ
=

exp (L − f (L))

| f ′(L)| (80)

4.3. Final results for the energy spectrum

We use parametric representation (72) and transform the integral, inverting relation between L

and log K/q (see details in [7]).
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We arrive at the following correlation

⟨ω⃗ · ω⃗(k)⟩ = ν2

√

ν(t + t0)
GN(K)H(K)/K; (81)

K = |⃗k|
√

ν(t + t0); (82)

GN(K) =
∫ N

K

q2Φ (⌊q⌋) exp (L(q/K))

| f ′(L(q/K))| dq; (83)

L(q/K) = f−1(log K/q); (84)

H(K) =
2

π3

∞

∑
n=1

φ(n)

n5
δ

(

AKb − 1

n2π2

)

+ πΦ

(⌊

1√
AKbπ

⌋)

; (85)

Here w = f−1(ξ) is the real root of equation f (w) = ξ. In our case ξ = log(K/q) → −∞, and

f−1(ξ) ∝ ξ1/3 → −(log q)1/3 These estimates show that function GN(K) in continuum limit N → ∞

tends to a constant, independent of K, but growing with N

GN(K) ∝ F(N) (86)

This work neglects such normalization factors, not affecting the energy spectrum.

The summation ∑n in H(K) at any given K selects only one term with a quantized spectrum in the

energy

E(k, t) ∝ k2 ⟨⃗v · v⃗(k)⟩ ∝ ⟨ω⃗ · ω⃗(k)⟩ ∝
ν2

√

ν(t + t0)
H(K)/K; (87)

The spectrum has delta function peaks at

Kn =
1

(An2π2)
1
b

, n = 1, 2, . . . ; (88)

|⃗k|n =
Kn

√

ν(t + t0)
; (89)

The whole spectrum support lies at K < K1; otherwise, both terms in H(K) vanish. The critical region

is K → 0, which means the smaller and smaller wavevectors at larger and larger times. In the limit

K → 0

H(K)/K ∝
1

Kb+1
; (90)

E(k, t) ∝
F(N)ν2

|⃗k|b+1(ν(t + t0))1+b/2
; (91)

This asymptotic power spectrum is only part of the story. There is a maximal time for any

wavevector

tmax(k) = −t0 +
K2

1

ν⃗k2
(92)

The decay stops at this wavelength after this moment, as H(K > K1) = 0.

The quantum effects lead to peaks and jumps at finite K = k
√

ν(t + t0). Only the average over a

large range of the spectrum approaches the scaling law.
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The integral over k⃗ would lead to a simple power law for the energy dissipation rate

E ∝
4π

(2π)3

∫ ∞

0
dkk2 ⟨ω⃗ · ω⃗(k)⟩ ∝

ν2

2π2ν(t + t0)

∫ ∞

0
dkkH

(

k
√

ν(t + t0)

)

=

∫ K1
0 KdKH(K)

2π2(t + t0)2
(93)

The normalization integral
∫ K1

0 KdKH(K) is a universal number

∫ K1

0
KdKH(K) =

1

2
π− b+4

b A−2/b





π2ζ
(

4
b − 1

)

ζ
(

4
b

) +
4ζ
(

2 + 4
b

)

bζ
(

3 + 4
b

)



 = 1.05869 × 107 (94)

This law agrees with the exact computation of the same quantity made in [4]. Comparing coefficients

in front of (t + t0)
−2, one can restore the missing normalization factor in our energy spectrum.

E(k, t) = ⟨ω⃗ · ω⃗(k)⟩ = ϵ

|⃗k|(t + t0)
H

(

|⃗k|
√

ν(t + t0)

)

; (95)

ϵ =
35π4ν

1728ζ(3)µ2
∫ K1

0 xdxH(x)
(96)

where µ ∼ √
ν → 0 is the chemical potential introduced in [4].

Finally, let us plot the universal function H(K)/K, using a width σ = 10−3 for normal distribution

instead of a pure delta function with σ = 0 (see Figure 10). The narrow peaks at the K = Kn are not

visible because of the very small heights of these peaks. The curve has tilted steps with diminishing

width as K → 0. The local slope is K−1, but the average slope over wide range is K−1−b ≈ K−2.03.

Out[ ]=
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Figure 10. The log-log plot of H(K)/K as a function of K = |⃗k|
√

ν(t + t0). For display purposes, the

delta function was replaced by the normal distribution PDF with σ = 10−3. This change did not affect

the curve, as these discrete spectrum peaks are numerically very small.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 December 2023                   doi:10.20944/preprints202312.1357.v5

https://doi.org/10.20944/preprints202312.1357.v5


16 of 25

Discrete energy spectrum in classical turbulence sounds like heresy, though it does not contradict

any known fluid dynamics principles. Let us stress that we did not assume a discrete spectrum: it

came from large-scale simulations on a supercomputer with very small statistical errors and some

exact distributions derived from the number theory.

This discrete spectrum originates from the exact analogy between decaying turbulence and the

quantum mechanics in loop space [1,4,8].

5. Comparison with real and numerical experiments

These quantum effects were never observed in numerical simulations [9]. On the other hand,

the power laws observed had exponents distributed in the range n = 1.2 to n = 1.6 in the decay law

E ∼ t−n.

Let us analyze these data and compare them with our theory. First, our theory corresponds to the

idealized case of infinite initial energy taking infinite time to dissipate.

Integrating our energy spectrum yields infrared infinity

E(t) ∝

∫ ∞

0

dk

kt
H(k

√

ν(t + t0)) ∼
∫ ∞

0
dk/k1+b = ∞ (97)

In the real world, with a finite spacial box, the wavevectors are cut off at some k0. The energy

spectrum below this cutoff rapidly decreases as k2 or k4.

The first case (Saffman turbulence) corresponds to the finite linear momentum of the fluid or a

conserved integral

L =
∫

d3r⃗ ⟨⃗v(0) · v⃗(⃗r)⟩ ; (98)

E(k) → Lk2

4π2
(99)

Our theory assumes the fluid at rest so that L = 0.

In that case (Batchelor turbulence), the small k behavior of the energy spectrum is determined by

another invariant I, corresponding to conserved angular momentum [10]

H⃗ =
∫

r⃗ × v⃗(⃗r)d3r; (100)

I = H⃗2/V; (101)

E(k) → Ik4

24π2
(102)

So, we must cut our spectrum at some wavelength k0 to match the Batchelor energy pumping at

smaller k. This matching takes place at t = 0.

Integrating our spectrum with this cutoff, we find

E(t) =
ϵ

t + t0

∫ ∞

k0

dk

k
H(k

√

ν(t + t0)) =
ϵ

t + t0

K1
∫

k0

√
ν(t+t0)

H(K)dK

K
; (103)

Ik4
0

24π2
= E(0) ≈ ϵ

t0

K1
∫

k0
√

νt0

H(K)dK

K
(104)
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The last equation fixes the unknown parameter t0 in our solution. The integral of the first term on

H(K) converges at small k, and it is a universal number

∫ K1

0

dK

K

2

π3

∞

∑
n=1

φ(n)

n5
δ

(

AKb − 1

n2π2

)

=
2

πb

∞

∑
1

φ(n)

n3
=

π

3bζ(3)
(105)

The second integral reduces to a finite sum so that

E(t) =
ϵ

t + t0
H1(k0

√

ν(t + t0)); (106)

H1(K) =
π

3bζ(3)
+

2π

b

⌊

1√
AKbπ

⌋

∑
n=1

Φ(n) log

(

n + 1

n

)

; (107)

The plot of this function is shown in Figure 11, and in a higrer resolution in Figure 12.
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Figure 11. The log-log plot of dimensionless energy E/(ϵνk2
0) as a function of dimensionless time

T = νk2
0(t + t0). There are tilted uneven steps at larger T and asymptotic average ∝ T−1−b at small T.

The running slope defined as a logarithmic derivative has a quantized spectrum in (110).
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Figure 12. The log-log plot of dimensionless energy E/(ϵνk2
0) as a function of dimensionless time

T = νk2
0(t + t0), at small T , approaching T−1−b at T → 0.

Now we are in a position to derive our prediction for effective time index n(t) in [9]

n(t) = − ∂ log E(t)

∂ log(t + t0)
= 1 +

1

2

H0(k0

√

ν(t + t0))

H1(k0

√

ν(t + t0))
; (108)

H0(K) = πΦ

(⌊

1√
AKbπ

⌋)

(109)

This universal function is plotted in Figure 13.
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Figure 13. The plot of effective index n in our solution as a function of dimensionless time variable

T = ν(t + t0)k
2
0
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Figure 14. The log-log plot of effective index n in our solution as a function of dimensionless time

variable T = ν(t + t0)k
2
0 for small values of T ∈ (0.001, 0.01).
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The index jumps down from the level nl to nl−1 at the discrete times tl

nl = 1 +
bΦ(l)

4
l

∑
n=2

Φ(n) log

(

n + 1

n

)

+
2

3ζ(3)

; (110)

tl = −t0 +
K2

l

νk2
0

; (111)

Kl =
1

(Al2π2)
1
b

, n = 2, 3, . . . ; (112)

The dissipation begins at some high level

l0 =

⌊

1
√

A(
√

νt0)bπ

⌋

(113)

and goes on with levels decreasing to l = 2, where dissipation ends. These levels nl , Kl are universal

numbers









































































































l Kl nl

25 4.1967 1.5142

24 4.541 1.5016

23 4.93005 1.52034

22 5.37204 1.49581

21 5.87709 1.50558

20 6.45786 1.50809

19 7.13043 1.52651

18 7.91533 1.49892

17 8.83925 1.52387

16 9.93733 1.49262

15 11.2566 1.50047

14 12.8612 1.50739

13 14.8404 1.53085

12 17.3216 1.4942

11 20.4916 1.53148

10 24.6334 1.48926

9 30.1929 1.51975

8 37.9058 1.51271

7 49.0588 1.54133

6 66.0729 1.48598

5 93.964 1.55954

4 144.591 1.51304

3 252.034 1.55189

2 551.542 1.47576









































































































(114)

In numerical or real experiments, these quantum jumps in the range 1.47 to 1.55 would be

interpreted as noise and averaged out, producing n ≈ 1.51 ± 0.1.

This behavior agrees with the effective index plotted in [9] in Fig.6a. The curves at that plot

oscillate between 1.4 and 1.6, leveling at 1.5; however, the resolution is not sufficient to find an exact

match.

Measuring our discrete levels of effective index nl poses a new challenge for experiments.
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6. Conclusions

There are several new results reported in this paper.

• We found continuum limit of distribution of scaling variables (34),(39) in the small Euler

ensemble.
• The scaling law (78) for the conditional probability leads to the discrete energy spectrum (88) at

the edge of each step of a devil’s staircase.
• The local slope of each step of energy spectrum is −1, not counting jumps. The average slope is

−1 − b ≈ −2.03. The K41 spectrum −5/3 = −1.67 lies in between these two quantum levels.
• This universal energy spectrum depending on k

√
νt corresponds to the effective spatial scale

L ∝
√

νt, or m = 1
2 in notations of [9].

• The decay at a given time goes only at small enough wavelengths. At a fixed wavelength, the

whole spectrum moves to the left with time, eventually stopping at some critical time, inversely

proportional to the wavelength square.
• With the cutoff of our spectrum at the small wavelength corresponding to initial energy pumping

(E(k) ∝ k4), we obtain discrete levels of the effective index n(t). During decay, the index jumps

downstairs from the level nl to nl−1, until the lowest level is reached. These levels are universal

numbers, given by the table (114).

In summary, we computed the continuum limit of our Euler ensemble and found quantum fractal

laws, with decay indexes quantized at certain universal levels.

These levels are calculable in the continuum limit of the Euler ensemble. Our computation

involves two numerical parameters a, b, which we computed in a large-scale simulation of the periodic

Markov chain with 200, 000, 000 steps on a supercomputer cluster.

It would be a new challenge to number theory to compute these two parameters analytically in

the big Euler ensemble’s N → ∞ limit.
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Appendix A Algorithms.

The numerical simulation of the correlation function does not require significant computer

resources. It is like a simulation of a one-dimensional Ising model with long-range forces. However, a

much more efficient method is to simulate the Markov process, equivalent to the Fermionic trace of

the [12].

Regarding that quantum trace, we are simulating the random histories of the changes of the

Fermionic occupation numbers, taking each step off history with Markov matrix probabilities.

We devised an algorithm that does not take computer memory growing with the number N of

points at the fractal curve. This algorithm works for very large N ∼ 109, and it can be executed on the

GPU in the supercomputer cluster, expanding the statistics of the simulation by massive parallelization.

We use large values of N = 2 ∗ 108. As for the random values of fractions
p
q with 0 < p < q < N,

we used the following Python algorithm.

We used even N, q and N± = N/2, as it was shown in [4] that these are the dominant values in

the local limit µ → 0.
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1 def EulerPair(self):

2 M = self.m

3 while (True):

4 q = 2 * np.random.randint(2,M//2)

5 p = np.random.randint(1, q)

6 if gcd(p,q) ==1:

7 if np.random.randint(0,M) < q:

8 break

9 pass

10 pass

11 return [ p, q]

In other words, we generated random even q ∈ (2, N), after which we tried random 0 < p < q until

we got a coprime pair (p, q). Statistically, at large N, this happens with probability 6/π2 ≈ 0.61 (see

[13]). On average, it takes π2/6 ≈ 1.64493 attempts to get a coprime pair.

Once we have a p candidate, we accept it with the chance w = q
N , which, again, for large q ∼ N

has a finite acceptance rate. The probabilities multiply to the desired factor, which is proportional to

Euler totient

P((p, q) = 1; p < q) =
φ(q)

q
; (A1)

φ(q)

q
P(random(1, N) < q) =

φ(q)

N
; (A2)

The main task is to generate a sequence of random spins σ1 = ±1, . . . σN = ±1 with prescribed

numbers N+, N− of +1 and −1 values. The statistical observables are additive and depend upon the

partial sums αn = ∑k<n σk.

We avoid storing arrays of σk, αk, using iterative methods to compute these observables. Our

RAM will not grow with N, with CPU time growing only linearly.

The C++ class RandomWalker generates this stream of σk, αk.

1 #pragma once

2

3 #include <random>

4

5 class RandomWalker

6 {

7 public:

8 RandomWalker(std::int64_t N_pos, std::int64_t N_neg) :

9 N_pos(N_pos), N_neg(N_neg), alpha(), gen(std::random_device{}()), unif(0, 1) {

10

11 }

12

13 int Advance()

14 {

15 int sigma = RandomSign();

16 (sigma == 1 ? N_pos : N_neg)--;

17 alpha += sigma;

18 return sigma;

19 }

20

21 std::int64_t get_alpha() const { return alpha; }

22

23 private:

24 int RandomSign()

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 December 2023                   doi:10.20944/preprints202312.1357.v5

https://doi.org/10.20944/preprints202312.1357.v5


23 of 25

25 {

26 return (unif(gen) * double(N_pos + N_neg) <= N_neg) ? -1 : 1;

27 }

28

29 std::int64_t N_pos;

30 std::int64_t N_neg;

31 std::int64_t alpha; // alpha[i]

32 std::minstd_rand gen;

33 std::uniform_real_distribution<double> unif;

34 };

35

At each consecutive step, the random sign σ = ±1 is generated with probabilities n+
n++n− , n−

n++n−
after which the corresponding number n+ or n− is decremented, starting with n± = N± at step zero.

By construction, in the end, there will be precisely N+ positive and N− negative random values σk.

This algorithm describes a Markov chain corresponding to sequential drawing random σ from

the set with initial N± positive and negative spins, and equivalent to one-dimensional random walk

on a number line. These conditional probabilities

P (σk = 1|σ1 . . . σk−1) =
n+

n+ + n−
; (A3)

n± = ∑
l<k

1 ± σl

2
(A4)

are such that unconditional probability equals to the correct value:

⟨P (σk = 1|σ1 . . . σk−1)⟩σ1 ...σk−1
= P (σk = 1) =

N+

N+ + N−
; (A5)

regardless of the position k of the variable σk at the chain.

The formal proof goes as follows.

Proof. At k = 1, without spins to the left on the chain, the conditional probability equals the total

probability, and the statement holds. With some number of spins on the left, averaging over all these

spins at a fixed value of σk is equivalent to averaging over all values except σk because the only

condition on random spins is their net sum, which is a symmetric function of their values. Thus, the

average of conditional probabilities equals the total probability (A5) for any spin on the chain, not just

the first one.

Here is the code, which computes the sample of |dS⃗nm|, ω⃗ · ω⃗ given n, m, N+, N−, β. The 2D

vectors S⃗ are treated as complex numbers, using 128 bit complex arithmetic.

1 #include <complex>

2 #include <cassert>

3 #include <iostream>

4 #include "Euler.h"

5 #include "RandomWalker.h"

6 #include "MatrixMaker.h"

7

8 using complex = std::complex<double>;

9 using namespace std::complex_literals;

10

11 inline std::complex<double> expi(double a)

12 {

13 double sin_a, cos_a;

14 sincos(a, &sin_a, &cos_a);
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15 return {cos_a, sin_a};

16 }

17

18 double DS(std::int64_t n, std::int64_t m,

19 std::int64_t N_pos, std::int64_t N_neg, double beta, /*OUT*/ double *o_o)

20 {

21 assert(n < m);

22 std::int64_t M = N_pos + N_neg;

23 int sigma_n, sigma_m, alpha_m, alpha_n;

24 complex S_nm, S_mn;

25 double R_nm;

26

27 RandomWalker walker(N_pos, N_neg);

28 std::int64_t i = 0;

29 for (; i != n; i++)

30 { // i = [0; n)

31 S_mn += expi(walker.get_alpha() * beta);

32 walker.Advance();

33 }

34

35 alpha_n = walker.get_alpha();

36 S_nm += expi(alpha_n * beta);

37 sigma_n = walker.Advance(); // i = n

38 for (i++; i != m; i++)

39 { // i = (n, m)

40 S_nm += expi(walker.get_alpha() * beta);

41 walker.Advance();

42 }

43

44 alpha_m = walker.get_alpha();

45 S_mn += expi(alpha_m * beta);

46 sigma_m = walker.Advance(); // i = m

47 for (i++; i != M; i++)

48 { // i = (m, M)

49 S_mn += expi(walker.get_alpha() * beta);

50 walker.Advance();

51 }

52

53 *o_o = -M * (M - 1) / 2 * sigma_n * sigma_m / (2 * pow(tan(beta / 2), 2)) \\

54 * pow(sin(beta / 4 * (2 * (alpha_m - alpha_n) + sigma_m - sigma_n)), 2);

55

56 S_nm /= double(m - n);

57 S_mn /= double(n + M - m);

58 return abs((S_nm - S_mn) / (2 * sin(beta / 2)));

59 }

This code fits the architecture of the supercomputer cluster with many GPU units at each node.

These GPU units are aggregated in blocks by 32, with every init inside the block working in sync. We

use this synchronization to collect statistics: every block is assigned with different random values of

n, m, N+, N−, β, and every unit inside the block performs the same computation of DS function with

different values of the integer seed for the random number generator, automatically provided by the

system.

When quantum computers become a reality, our sum over the Markov histories of discrete spin

(or Fermion) variables will run massively parallel on the qubits. Our Euler/Markov ensemble is ideally

suited for quantum computers.
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